数理逻辑2 B卷
Mathematical Logic 完全理解!
Coqide
A
P ∧ (Q ∧ R), (S ∧ E) ∧ U, E ⇒ W ⊢ (Q ∧ P) ∧ W
1 | Require Import Classical. |
B
Q, Q ⇒ P ∨ R, R ⇒ S ⊢ P ∨ S
1 | Require Import Classical. |
C
S ⇒ P, Q ⇒ E ⊢ (P ⇒ Q) ⇒ (S ⇒ E)
1 | Require Import Classical. |
D
(P ⇒ Q) ⇒ (P ⇒ R) ⇒ (Q ⇒ R ⇒ W) ⇒ P ⇒ W
1 | Require Import Classical. |
Symbolize
- No superhero is faster than Spiderman.
- Some evil superheros can climb on the wall.
- Evil superheros are not faster than Spiderman.
- If someone is faster than Spiderman, then Spiderman is evil.
- Everone who is faster than Spiderman is evil and can climb on the wall.
- There is someone who is faster than anyone who can climb on the wall.
- Someone who is faster than Spiderman is evil.
- Only those who are evil can be faster than those who are not faster than Spiderman.
Find Truth
UD: { Potter, Granger, Weasley }
Extension H: { Potter, Weasley }
Extension W: { Granger, Weasley }
Extension R: { (Potter, Granger), (Granger, Potter), (Weasley, Granger) }
Referent a: Potter
- ∃x(Rxa ∧ Rax)
- ∀x(Rxa ∨ Rax)
- ∀x(Hx ⇔ Wx)
- ∀x(Rxa ⇒ Wx)
- ∀x[Wx ⇒ (Hx ∧ Wx)]
- ∃x(Rxx)
- ∃x∃y(Rxy)
- ∀x∀y(Rxy)
- ∀x∀y(Rxy ∨ Ryx)
- ∀x∀y∀z[(Rxy ∧ Ryz) ⇒ Rxz]
IsConsistent
P ⇒ Q, Q ∧ (P ∨ P), ¬(Q ∨ R)
IsValid
- R ⇒ (P ∨ Q), R ∧ Q ⊢ R ⇒ P
- ¬R ⇒ Q, ¬P ∨ ¬Q, ¬(P ⇔ Q) ⊢ ¬(P ∨ Q)
Symbolize & IsValid
Every dwarf that saw Snowhite biting into the apple want to save her.
Someone (a dwarf) let the stepmother into the house.
Those dwarfs that want to save Snowite did not let the stepmother into the house.
Therefore: Not every dwaft saw Snowhite biting the apple.
Natural Deduction
- P ∨ Q ⇒ R ⊢ (P ∧ Q) ⇒ R
1 | Require Import Classical. |
- (R ∧ S) ⇒ (P ∧ ¬Q), E ∧ (E ⇒ S), Q ⊢ R ⇒ P
1 | Require Import Classical. |
- j is a constant, ∀x(¬Mx ∨ Ljx), ∀x(Bx ⇒ Ljx), ∀x(Mx ∨ Bx) ⊢ ∀xLjx
- ∃x∀yPxy ⊢ ∀y∃xPxy
- ∀xPx, ∃x(Px ⇒ ∀yQy), ∀x(Qx ⇒ Rx) ⊢ ∃x(Qx ∧ Rx)
Argument invalid, Prove
∃x(Dx), ∃x(Ex), ∀x(Dx ∨ Ex) ⊢ ∃x(Dx ∧ Ex)